At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The direction of the parabola is determined by the leading coefficient of the polynomial (a > 0 - Upwards, a < 0 - Downwards). The y-intercept of the polynomial is c and the two zeros of the polynomial are x = - b / (2 · a) ± [1 / (2 · a)] · √(b² - 4 · a · c).
What are the characteristics of quadratic equations?
Herein we have a quadratic equation of the form f(x) = a · x² + b · x + c. To determine the direction of the parabola, we must transform this expression into its vertex form and looking for the sign of the vertex constant:
f(x) = a · x² + b · x + c
f(x) = a · [x² + (b / a) · x + (c / a)]
f(x) + b² / (4 · a) - c = a · [x² + (b / a) · x + b² / (4 · a²)]
f(x) + b² / (4 · a) - c = a · [x + b / (2 · a)]²
If a > 0, then the direction of the parabola is upwards, but if a < 0, then the direction of the parabola is downwards.
The y-intercept is found by evaluating the quadratic equation at x = 0:
f(0) = a · 0² + b · 0 + c
f(0) = c
And the zeros are determined by the quadratic formula:
x = - b / (2 · a) ± [1 / (2 · a)] · √(b² - 4 · a · c)
The direction of the parabola is determined by the leading coefficient of the polynomial (a > 0 - Upwards, a < 0 - Downwards). The y-intercept of the polynomial is c and the two zeros of the polynomial are x = - b / (2 · a) ± [1 / (2 · a)] · √(b² - 4 · a · c).
To learn more on parabolas: https://brainly.com/question/4074088
#SPJ1
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.