Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
The Co-ordinate of C is (4/3, -1/2)
Step-by-step explanation:
We have two equation one is of straight line equation which is:
y=2x-3 (i)
Other equation is of quadratic function which is:
y=-3x^2+5 (ii)
Put the value of y from equation (i) in equation (ii)
So, we have:
2x-3=-3x^2+5
3x^2+2x-8=0
By factorization:
3x^2+6x-4x-8=0
3x(x+2)-4x(x+2)=0
(x+2)(3x-4)=0
x+2=0 ; 3x-4=0
x=-2 ; x=4/3
Put first x=-2 in equation (i)
y=2(-2)-3
y=-4-3
y=-7
Now Put x=4/3 in equation (i)
y=2(4/3)-3
y=8/3-3
y=-1/2
So, we have two Order pair One is (-2 , -7) and Second one is (4/3 , -1/2)
Hence the Co-ordinate of C is:
C=(4/3 , -1/2)
Answer:
Point C: (3, 3)
Point D: (3, -22)
Step-by-step explanation:
If the distance between points C and D is 25 units, the y-value of point D will be 25 less than the y-value of point C. The x-values of the two points are the same.
Therefore:
[tex]\textsf{Equation 1}: \quad y=2x-3[/tex]
[tex]\textsf{Equation 2}: \quad y-25=-3x^2+5[/tex]
As the x-values are the same, substitute the first equation into the second equation and solve for x to find the x-value of points C and D:
[tex]\implies 2x-3-25=-3x^2+5[/tex]
[tex]\implies 3x^2+2x-33=0[/tex]
[tex]\implies 3x^2-9x+11x-33=0[/tex]
[tex]\implies 3x(x-3)+11(x-3)=0[/tex]
[tex]\implies (x-3)(3x+11)=0[/tex]
[tex]\implies x=3, -\dfrac{11}{3}[/tex]
From inspection of the given graph, the x-value of points C and D is positive, therefore x = 3.
To find the y-value of points C and D, substitute the found value of x into the two original equations of the lines:
[tex]\begin{aligned} \textsf{Point C}: \quad 2x-3 & =y\\2(3)-3 & =3\\ \implies & (3, 3)\end{aligned}[/tex]
[tex]\begin{aligned} \textsf{Point D}: \quad -3x^2+5 & = y \\ -3(3)^2+5 & =-22\\ \implies & (3, -22)\end{aligned}[/tex]
Therefore, point C is (3, 3) and point D is (3, -22).
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.