Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
The potential zeros of f(x)=6x^4+ 2x^3 - 4x^2 +2 are ±(1, 1/2, 1/3, 1/6, 2, 2/3)
How to determine the potential zeros of the function f(x)?
The function is given as:
f(x)=6x^4+ 2x^3 - 4x^2 +2
For a function P(x) such that
P(x) = ax^n +...... + b
The rational roots of the function p(x) are
Rational roots = ± Possible factors of b/Possible factors of a
In the function f(x), we have:
a = 6
b = 2
The factors of 6 and 2 are
a = 1, 2, 3 and 6
b = 1 and 2
So, we have:
Rational roots = ±(1, 2)/(1, 2, 3, 6)
Split the expression
Rational roots = ±1/(1, 2, 3, 6)/ and ±2/(1, 2, 3, 6)
Evaluate the quotient
Rational roots = ±(1, 1/2, 1/3, 1/6, 2, 1, 2/3, 1/3)
Remove the repetition
Rational roots = ±(1, 1/2, 1/3, 1/6, 2, 2/3)
Hence, the potential zeros of f(x)=6x^4+ 2x^3 - 4x^2 +2 are ±(1, 1/2, 1/3, 1/6, 2, 2/3)
The complete parameters are:
The function is given as:
f(x) = 3x^3 + 2x^2 + 3x + 6
The potential zeros of f(x)=6x^4+ 2x^3 - 4x^2 +2 are ±(1, 1/2, 1/3, 1/6, 2, 2/3)
Read more about rational roots at
brainly.com/question/17754398
#SPJ1
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.