At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Using the z-distribution, the p-value for the test is of 0.0040.
What is the test statistic for the z-distribution?
The test statistic is given by:
[tex]z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which:
- [tex]\overline{x}[/tex] is the sample mean.
- [tex]\mu[/tex] is the value tested.
- [tex]\sigma[/tex] is the standard deviation of the population.
- n is the sample size.
For this problem, the parameters are given as follows:
[tex]\overline{x} = 33.8, \mu = 32, \sigma = 4.3, n = 40[/tex]
Hence the value of the test statistic is given by:
[tex]z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
z = (33.8 - 32)/(4.3/sqrt(40))
z = 2.65.
What is the p-value?
Using a z-distribution calculator, with z = 2.65 and a right-tailed test, as we are testing if the mean is greater than a value, the p-value is of 0.0040.
More can be learned about the z-distribution at https://brainly.com/question/16313918
#SPJ1
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.