Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The value of g(x) is (x^3+5) and g(64) = 262149.
According to the statement
we have given that the
f(x)=√x^3 and (fog)(x)=√(x^3+5) and we have to find the value of the g(64).
So, For find the value of g(64), Firstly we have to find the g(x).
So,
We given that
f(x)=√x^3 and (fog)(x)=√(x^3+5)
And here the formula used is
(f o g)(x) = f (g(x))
here (fog)(x)=√(x^3+5) and f(x)=√x^3
From this we get g(x) is (x^3+5)
So,
g(x) = (x^3+5) and
g(64) = ((64)^3+5)
g(64) = 262149.
So, The value of g(x) is (x^3+5) and g(64) = 262149.
Disclaimer: This question was incomplete. Please find the full content below.
Question:
If f(x)=√x^3 and (fog)(x)=√(x^3+5). Then find the value of g(64).
Learn more about (fog)(x) here
https://brainly.com/question/2328150
#SPJ1
I take this to mean [tex]f(x) = \sqrt{x^3}[/tex] and [tex](f\circ g)(x) = \sqrt x[/tex].
Let's first find the inverse of [tex]f[/tex].
[tex]f\left(f^{-1}(x)\right) = \sqrt{\left(f^{-1}(x)\right)^3} = x \\\\ \implies \left(f^{-1}(x)\right)^3 = x^2 \\\\ \implies f^{-1}(x) = x^{2/3}[/tex]
(Note that [tex]f[/tex] is defined only if [tex]x^3\ge0[/tex], or [tex]x\ge0[/tex].)
Apply the inverse of [tex]f[/tex] to [tex]f\circ g[/tex].
[tex](f\circ g)(x) = f(g(x)) = \sqrt x \\\\ \implies f^{-1}\left(f(g(x))\right) = f^{-1}(\sqrt x) \\\\ \implies g(x) = \left(\sqrt x\right)^{2/3} = \left(x^{1/2}\right)^{2/3} = x^{1/3} = \sqrt[3]{x}[/tex]
Then
[tex]g(64) = \sqrt[3]{64} = \sqrt[3]{4^3} = \boxed{4}[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.