Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
[tex]x+\frac{b}{2a}=\pm\frac{\sqrt{b^2-4ac}}{2a}[/tex]
Step-by-step explanation:
So when it says simplify the right side, all it's doing is distributing the square root across division.
So when we distribute the square root we get the fraction
[tex]\frac{\sqrt{b^2-4ac}}{\sqrt{4a^2}}[/tex]
And it's important to know that you cannot distribute the square root across addition/subtraction, but you can with multiplication.
There's a radical identity that states: [tex]\sqrt[n]{a} * \sqrt[n]{b} = \sqrt[n]{ab}[/tex] and this works both ways, so we can use this to combine like radicals or separate them into multiple. In this case we can separate the square root of 4a^2 into two radicals
[tex]\frac{\sqrt{b^2-4ac}}{\sqrt{4} * \sqrt{a^2}}[/tex]
And from here it's pretty easy to see that the square root of 4 is 2, and the square root of a^2 is a, since the square exponent and square root just cancel out.
So we get the following expression on the right side
[tex]\frac{\sqrt{b^2-4ac}}{2a}[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.