Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Using the normal distribution, there is a 0.2076 = 20.76% probability that the proportion of persons with a college degree will differ from the population proportion by greater than 3%.
Normal Probability Distribution
The z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
- By the Central Limit Theorem, for a proportion p in a sample of size n, the sampling distribution of sample proportion is approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1 - p)}{n}}[/tex], as long as [tex]np \geq 10[/tex] and [tex]n(1 - p) \geq 10[/tex].
The proportion estimate and the sample size are given as follows:
p = 0.45, n = 437.
Hence the mean and the standard error are:
- [tex]\mu = p = 0.45[/tex]
- [tex]s = \sqrt{\frac{p(1 - p)}{n}} = \sqrt{\frac{0.45(0.55)}{437}} = 0.0238[/tex]
The probability that the proportion of persons with a college degree will differ from the population proportion by greater than 3% is 2 multiplied by the p-value of Z when X = 0.45 - 0.03 = 0.42.
Hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem:
[tex]Z = \frac{X - \mu}{s}[/tex]
Z = (0.42 - 0.45)/0.0238
Z = -1.26
Z = -1.26 has a p-value of 0.1038.
2 x 0.1038 = 0.2076.
0.2076 = 20.76% probability that the proportion of persons with a college degree will differ from the population proportion by greater than 3%.
More can be learned about the normal distribution at https://brainly.com/question/28159597
#SPJ1
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.