Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The areas of the parallelograms can be compared as: A. The area of parallelogram 1 is 4 square units greater than the area of parallelogram 2.
What is a parallelogram?
A parallelogram refers to a geometrical shape and it can be defined as a type of quadrilateral and two-dimensional geometrical figure that has two (2) equal and parallel opposite sides.
How to calculate the area of a triangle?
Mathematically, the area of a triangle can be calculated by using this formula:
Area = ½ × b × h
Where:
- b represents the base area.
- h represents the height.
How to calculate the area of a rectangle?
Mathematically, the area of a rectangle can be calculated by using this formula;
A = LW
Where:
- A represents the area of a rectangle.
- l represents the length of a rectangle.
- w represents the width of a rectangle.
Next, we would determine the area of the two parallelograms as follows:
Area of parallelogram 1 = Area of red-rectangular figure - Area of triangle A - Area of triangle B - Area of triangle C - Area of triangle D.
Substituting the given parameters into the formula, we have;
Area of parallelogram 1 = (6 × 6) - (½ × 4 × 2) - (½ × 2 × 4)- (½ × 4 × 2) - (½ × 2 × 4)
Area of parallelogram 1 = 36 - 4 - 4 - 4 - 4
Area of parallelogram 1 = 36 - 16
Area of parallelogram 1 = 20 units².
For parallelogram 2, we have:
Area of parallelogram 2 = Area of blue-rectangular figure - Area of triangle P - Area of triangle Q - Area of triangle R - Area of triangle S.
Substituting the given parameters into the formula, we have;
Area of parallelogram 2 = (8 × 4) - (½ × 2 × 2) - (½ × 6 × 2)- (½ × 2 × 2) - (½ × 2 × 6)
Area of parallelogram 2 = 32 - 2 - 6 - 2 - 6
Area of parallelogram 2 = 32 - 16
Area of parallelogram 2 = 16 units².
Difference = Area of parallelogram 1 - Area of parallelogram 2
Difference = 20 - 16
Difference = 4 units².
In conclusion, we can infer and logically deduce that the area of parallelogram 1 is 4 square units greater than the area of parallelogram 2.
Read more on parallelogram here: https://brainly.com/question/4459854
#SPJ1
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.