Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Check the picture below, so the ball's path is pretty much like so, and it reaches its hightest at its vertex, so
[tex]~~~~~~\textit{initial velocity in feet} \\\\ h(t) = -16t^2+v_ot+h_o \quad \begin{cases} v_o=\textit{initial velocity}&80\\ \qquad \textit{of the object}\\ h_o=\textit{initial height}&0\\ \qquad \textit{of the object}\\ h=\textit{object's height}&h\\ \qquad \textit{at "t" seconds} \end{cases} \\\\\\ f(t)=80t-16t^2\implies f(t)=-16t^2+80t+0 \\\\[-0.35em] ~\dotfill[/tex]
[tex]\textit{vertex of a vertical parabola, using coefficients} \\\\ y=\stackrel{\stackrel{a}{\downarrow }}{-16}x^2\stackrel{\stackrel{b}{\downarrow }}{+80}x\stackrel{\stackrel{c}{\downarrow }}{+0} \qquad \qquad \left(-\cfrac{ b}{2 a}~~~~ ,~~~~ c-\cfrac{ b^2}{4 a}\right)[/tex]
[tex]\left(-\cfrac{ 80}{2(-16)}~~~~ ,~~~~ 0-\cfrac{ (80)^2}{4(-16)}\right) \implies \left( - \cfrac{ 80 }{ -32 }~~,~~0 - \cfrac{ 6400 }{ -64 } \right) \\\\\\ \left( \cfrac{5}{2}~~,~~100 \right)\implies \underset{~\hfill feet ~~ }{\stackrel{seconds\qquad }{\left( 2\frac{1}{2}~~,~~100 \right)}}[/tex]

Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.