Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Identify the equation for the line tangent to the circle x^2 + y^2 = 100 at the point (−6, 8).

Sagot :

The equation of tangent to the circle [tex]x^{2} +y^{2} =100[/tex] at the point  (-6,8) is -6x+8y=100.

Given the equation of circle [tex]x^{2} +y^{2} =100[/tex]

and point at which the tangent meets the circle is (-6,8).

A tangent to a circle is basically a line at point P with coordinates is a straight line that touches the circle at P. The tangent is perpendicular to the radius which joins the centre of circle to the point P.

Linear equation looks like y=mx+c.

Tangent to a circle of equation [tex]x^{2} +y^{2} =a^{2}[/tex] at (z,t) is:

xz+ty=[tex]a^{2}[/tex].

We have to just put the values in the formula above to get the equation of tangent to the circle [tex]x^{2} +y^{2} =100[/tex]  at (-6,8).

It will be as under:

x(-6)+y(8)=100

-6x+8y=100

Hence the equation of tangent to the circle at the point  (-6,8) is -6x+8y=100.

Learn more about tangent of circle at https://brainly.com/question/17040970

#SPJ1

Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.