Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
[tex]\dfrac{(x-1)^2}{9}-\dfrac{(y-2)^2}{4}=1[/tex]
Step-by-step explanation:
Given equation:
[tex]4x^2-9y^2-8x+36y-68=0[/tex]
This is an equation for a horizontal hyperbola.
To complete the square for a hyperbola
Arrange the equation so all the terms with variables are on the left side and the constant is on the right side.
[tex]\implies 4x^2-8x-9y^2+36y=68[/tex]
Factor out the coefficient of the x² term and the y² term.
[tex]\implies 4(x^2-2x)-9(y^2-4y)=68[/tex]
Add the square of half the coefficient of x and y inside the parentheses of the left side, and add the distributed values to the right side:
[tex]\implies 4\left(x^2-2x+\left(\dfrac{-2}{2}\right)^2\right)-9\left(y^2-4y+\left(\dfrac{-4}{2}\right)^2\right)=68+4\left(\dfrac{-2}{2}\right)^2-9\left(\dfrac{-4}{2}\right)^2[/tex]
[tex]\implies 4\left(x^2-2x+1\right)-9\left(y^2-4y+4\right)=36[/tex]
Factor the two perfect trinomials on the left side:
[tex]\implies 4(x-1)^2-9(y-2)^2=36[/tex]
Divide both sides by the number of the right side so the right side equals 1:
[tex]\implies \dfrac{4(x-1)^2}{36}-\dfrac{9(y-2)^2}{36}=\dfrac{36}{36}[/tex]
Simplify:
[tex]\implies \dfrac{(x-1)^2}{9}-\dfrac{(y-2)^2}{4}=1[/tex]
Therefore, this is the standard equation for a horizontal hyperbola with:
- center = (1, 2)
- vertices = (-2, 2) and (4, 2)
- co-vertices = (1, 0) and (1, 4)
- [tex]\textsf{Asymptotes}: \quad y = -\dfrac{2}{3}x+\dfrac{8}{3} \textsf{ and }y=\dfrac{2}{3}x+\dfrac{4}{3}[/tex]
- [tex]\textsf{Foci}: \quad (1-\sqrt{13}, 2) \textsf{ and }(1+\sqrt{13}, 2)[/tex]
![View image semsee45](https://us-static.z-dn.net/files/d24/12e2fc1f67e374be675fd0f08c0b5eb9.png)
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.