Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
An equation in standard form for a hyperbola with center (0, 0), vertex (-5, 0), and focus (-6, 0) is given by y²/25 - x²/9 = 1.
What is an equation?
An equation can be defined as a mathematical expression which is used to show and indicate that two (2) or more numerical quantities are equal.
How to determine the equation of a hyperbola?
Mathematically, the equation of a hyperbola in standard form is given by:
[tex]\frac{(y\;-\;k)^2}{a^2} - \frac{(x\;-\;h)^2}{b^2} = 1[/tex]
Given the following data:
Center (h, k) = (0, 0)
Vertex (h+a, k) = (-5, 0)
Foci, F = (h+c, k) = (-6, 0) and F' = (6, 0)
Also, we can logically deduce that the value of a and c are -5 and -6 respectively.
For the value of b, we would apply Pythagorean's theorem:
c² = a² + b²
b² = c² - a²
b² = (-6)² - (-5)²
b² = 36 - 25
b² = 9.
b = √9
b = 3.
Substituting the given parameters into the equation of a hyperbola in standard form, we have;
[tex]\frac{(y\;-\;k)^2}{a^2} - \frac{(x\;-\;h)^2}{b^2} = 1\\\\\frac{(y\;-\;0)^2}{-5^2} - \frac{(x\;-\;0)^2}{3^2} = 1\\\\\frac{y^2}{-5^2} - \frac{x^2}{3^2} = 1\\\\\frac{y^2}{25} - \frac{x^2}{9} = 1[/tex]
y²/25 - x²/9 = 1.
In conclusion, we can logically deduce that an equation in standard form for a hyperbola with center (0, 0), vertex (-5, 0), and focus (-6, 0) is given by y²/25 - x²/9 = 1.
Read more on hyperbola here: https://brainly.com/question/3405939
#SPJ1
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.