Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
- f(x) is an exponential function
- g(x) is a polynomial function of degree 3
- Key common features: same domain, both have one x-intercept and one y-intercept.
Step-by-step explanation:
Given functions:
[tex]\begin{cases}f(x)=-4^x+5\\g(x)=x^3+x^2-4x+5 \end{cases}[/tex]
Function f(x)
This is an exponential function.
An exponential function includes a real number with an exponent containing a variable.
x-intercept (when y = 0):
[tex]\begin{aligned}f(x) & = 0\\\implies -4^x+5 & =0\\ 4^x &=5\\\ln 4^x &= \ln 5\\x \ln 4 &= \ln 5\\x&=\dfrac{ \ln 5}{\ln 4}\\x&=1.16\:\: \sf(2\:d.p.)\end{aligned}[/tex]
Therefore, the x-intercept of f(x) is (1.16, 0).
y-intercept (when x = 0):
[tex]\begin{aligned}f(0) & = -4^{0}+5\\& = 1+5\\& = 6\end{aligned}[/tex]
Therefore, the y-intercept of f(x) is (0, 6).
End behavior
[tex]\textsf{As }x \rightarrow \infty, \: f(x) \rightarrow \infty[/tex]
[tex]\textsf{As }x \rightarrow -\infty, \: f(x) \rightarrow 5[/tex]
Therefore, there is a horizontal asymptote at y = 5 which means the curve gets close to y = 5 but never touches it. Therefore:
- Domain: (-∞, ∞)
- Range: (-∞, 5)
Function g(x)
This is a polynomial function of degree 3 (since the greatest exponent of the function is 3).
A polynomial function is made up of variables, constants and exponents that are combined using mathematical operations.
x-intercept (when y = 0):
There is only one x-intercept of function g(x). It can be found algebraically using the Newton Raphson numerical method, or by using a calculator.
From a calculator, the x-intercept of g(x) is (-2.94, 0) to 2 decimal places.
y-intercept (when x = 0):
[tex]\begin{aligned}g(0) & = (0)^3+(0)^2-4(0)+5\\& = 0+0+0+5\\& = 5 \end{aligned}[/tex]
Therefore, the y-intercept of g(x) is (0, 5).
End behavior
[tex]\textsf{As }x \rightarrow \infty, \: f(x) \rightarrow \infty[/tex]
[tex]\textsf{As }x \rightarrow -\infty, \: f(x) \rightarrow - \infty[/tex]
Therefore:
- Domain: (-∞, ∞)
- Range: (-∞, ∞)
Conclusion
Key features both functions have in common:
- One x-intercept (though not the same)
- One y-intercept (though not the same)
- Same unrestricted domain: (-∞, ∞)
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.