Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Based on the calculations, the sum of this geometric series is equal to 9,990.
The standard form of a geometric series.
Mathematically, the standard form of a geometric series can be represented by the following expression:
[tex]\sum^{n-1}_{k=0}a_1(r)^k[/tex]
Where:
- a₁ is the first term of a geometric series.
- r is the common ratio.
How to calculate the sum of a geometric series?
Also, the sum of a geometric series is given by this mathematical expression:
[tex]S=\frac{a_1(1-r^n)}{1-r}[/tex]
Given the following data:
- First term, a = 9000.
- Common ratio, r = 900/9000 = 0.1
Substituting the given parameters into the formula, we have;
[tex]S=\frac{9000(1-0.1^3)}{1-0.1}\\\\S=\frac{9000(1-0.001)}{1-0.1}[/tex]
S = 9000(0.999)/0.9
S = 8,991/0.9
S = 9,990.
Read more on geometric series here: brainly.com/question/12630565
#SPJ1
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.