Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Based on the calculations, the sum of this geometric series is equal to 9,990.
The standard form of a geometric series.
Mathematically, the standard form of a geometric series can be represented by the following expression:
[tex]\sum^{n-1}_{k=0}a_1(r)^k[/tex]
Where:
- a₁ is the first term of a geometric series.
- r is the common ratio.
How to calculate the sum of a geometric series?
Also, the sum of a geometric series is given by this mathematical expression:
[tex]S=\frac{a_1(1-r^n)}{1-r}[/tex]
Given the following data:
- First term, a = 9000.
- Common ratio, r = 900/9000 = 0.1
Substituting the given parameters into the formula, we have;
[tex]S=\frac{9000(1-0.1^3)}{1-0.1}\\\\S=\frac{9000(1-0.001)}{1-0.1}[/tex]
S = 9000(0.999)/0.9
S = 8,991/0.9
S = 9,990.
Read more on geometric series here: brainly.com/question/12630565
#SPJ1
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.