Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
(a) The kinetic energy of the projectile when it reaches the highest point in its trajectory is 900 J.
(b) The work done in firing the projectile is 2,500 J.
Kinetic energy of the projectile at maximum height
The kinetic energy of the projectile when it reaches the highest point in its trajectory is calculated as follows;
K.E = ¹/₂mv₀ₓ²
where;
- m is mass of the projectile
- v₀ₓ is the initial horizontal component of the velocity at maximum height
Note: At maximum height the final vertical velocity is zero and the final horizontal velocity is equal to the initial horizontal velocity.
K.E = (0.5)(2)(30²)
K.E = 900 J
Work done in firing the projectile
Based on the principle of conservation of energy, the work done in firing the projectile is equal to the initial kinetic energy of the projectile.
W = K.E(i) = ¹/₂mv²
where;
- v is the resultant velocity
v = √(30² + 40²)
v = 50 m/s
W = (0.5)(2)(50²)
W = 2,500 J
Thus, the kinetic energy of the projectile when it reaches the highest point in its trajectory is 900 J.
The work done in firing the projectile is 2,500 J.
Learn more about kinetic energy here: https://brainly.com/question/25959744
#SPJ1
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.