Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Using the Fundamental Counting Theorem, it is found that there are 1024 ways of delivering the letters.
What is the Fundamental Counting Theorem?
It is a theorem that states that if there are n things, each with [tex]n_1, n_2, \cdots, n_n[/tex] ways to be done, each thing independent of the other, the number of ways they can be done is:
[tex]N = n_1 \times n_2 \times \cdots \times n_n[/tex]
In this problem, each house has a correct letter, however the letter cannot be used for the house, hence the parameters are given as follows:
n1 = n2 = n3 = n4 = n5 = 5 - 1 = 4.
Thus the number of ways is:
N = 4 x 4 x 4 x 4 x 4 = 4^5 = 1024.
More can be learned about the Fundamental Counting Theorem at https://brainly.com/question/24314866
#SPJ1
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.