Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Find the number of ways of delivering five letters to five houses so that no house gets
a correct letter.

Sagot :

Using the Fundamental Counting Theorem, it is found that there are 1024 ways of delivering the letters.

What is the Fundamental Counting Theorem?

It is a theorem that states that if there are n things, each with [tex]n_1, n_2, \cdots, n_n[/tex] ways to be done, each thing independent of the other, the number of ways they can be done is:

[tex]N = n_1 \times n_2 \times \cdots \times n_n[/tex]

In this problem, each house has a correct letter, however the letter cannot be used for the house, hence the parameters are given as follows:

n1 = n2 = n3 = n4 = n5 = 5 - 1 = 4.

Thus the number of ways is:

N = 4 x 4 x 4 x 4 x 4 = 4^5 = 1024.

More can be learned about the Fundamental Counting Theorem at https://brainly.com/question/24314866

#SPJ1