Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Find the number of ways of delivering five letters to five houses so that no house gets
a correct letter.


Sagot :

Using the Fundamental Counting Theorem, it is found that there are 1024 ways of delivering the letters.

What is the Fundamental Counting Theorem?

It is a theorem that states that if there are n things, each with [tex]n_1, n_2, \cdots, n_n[/tex] ways to be done, each thing independent of the other, the number of ways they can be done is:

[tex]N = n_1 \times n_2 \times \cdots \times n_n[/tex]

In this problem, each house has a correct letter, however the letter cannot be used for the house, hence the parameters are given as follows:

n1 = n2 = n3 = n4 = n5 = 5 - 1 = 4.

Thus the number of ways is:

N = 4 x 4 x 4 x 4 x 4 = 4^5 = 1024.

More can be learned about the Fundamental Counting Theorem at https://brainly.com/question/24314866

#SPJ1

We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.