Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Find the height (in meters) of a storage tank in the shape of a right circular cylinder that has a circumference measuring 4 m and a volume measuring 36 m3.

Sagot :

Answer:

[tex]h = \bf 28.3 \space\ m[/tex]

Step-by-step explanation:

• We are given:

○ Volume = 36 m³,

○ Circumference = 4 m

• Let's find the radius of the cylinder first:

[tex]\mathrm{Circumference} = 2 \pi r[/tex]

Solving for [tex]r[/tex] :

⇒ [tex]4 = 2 \pi r[/tex]

⇒ [tex]r = \frac{4}{2\pi}[/tex]

⇒ [tex]r = \bf \frac{2}{\pi}[/tex]

• Now we can calculate the height using the formula for volume of a cylinder:

[tex]\mathrm{Volume} = \boxed{\pi r^2 h}[/tex]

Solving for [tex]h[/tex] :

⇒ [tex]36 = \pi \cdot (\frac{2}{\pi}) ^2 \cdot h[/tex]

⇒ [tex]h = \frac{36 \pi^2}{4 \pi}[/tex]

⇒ [tex]h = 9 \pi[/tex]

⇒ [tex]h = \bf 28.3 \space\ m[/tex]

Answer:

9π m ≈ 28.27m

Step-by-step explanation:

The volume of a right cylinder is given by the formula

πr²h where r is the radius of the base of the cylinder(which is a circle), h is the height of the cylinder

Circumference of base of cylinder is given by the formula 2πr

Given,

2πr = 4m

r = 2/π m

Volume given as 36 m³

So πr²h = 36
π (2/π)² h = 36

π x 4/π² h = 36

(4/π) h = 36

h = 36π/4 = 9π ≈ 28.27m



Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.