Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
[tex]E = \int\limits^2_{-3} {} \, \frac{27dy}{( 4 - y)^2}[/tex] is the integrals for the magnitude of the electric field.
A characteristic of electricity exists at every location in space when charge of any kind is present. The value of E, often known as the electric field strength, electric field intensity, or just the electric field, expresses the strength and direction of the electric field.
The formula for the electric field due to a point charge is:
[tex]E = \frac{kq}{r^2}[/tex]
Here q is the charge, r is the distance from the charge, and k = 8.99 × [tex]10^9 Nm^2/ C^2[/tex]
Imagine an infinitely - tiny portion of this charge distribution that has a charge [tex]dq[/tex]. This charge produces an electric field dE with magnitude:
[tex]\int\limits^ {} \, dE = \int\limits^ {} \, \frac{k dq}{r^2}[/tex]
[tex]E = \int\limits^ {} \, \frac{k dq}{r^2}[/tex]
Here, λ = 3.0 nC/m dq
= λ.dy dE = ∫k.dq
From y = -3 m to y = 2 m, there is a 3.0 nC/m uniform linear charge distributed along the y axis.
The integrals for the magnitude of the electric field at y = 4 m on the y axis:
[tex]E = k \lambda \int\limits^2_{-3} {} \, \frac{dy}{( 4 - y)^2}[/tex]
[tex]E = \int\limits^2_{-3} {} \, \frac{27dy}{( 4 - y)^2}[/tex]
Learn more about electric field here:
https://brainly.com/question/14372859
#SPJ1
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.