Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Complete the square.
[tex]z^4 + z^2 - i\sqrt 3 = \left(z^2 + \dfrac12\right)^2 - \dfrac14 - i\sqrt3 = 0[/tex]
[tex]\left(z^2 + \dfrac12\right)^2 = \dfrac{1 + 4\sqrt3\,i}4[/tex]
Use de Moivre's theorem to compute the square roots of the right side.
[tex]w = \dfrac{1 + 4\sqrt3\,i}4 = \dfrac74 \exp\left(i \tan^{-1}(4\sqrt3)\right)[/tex]
[tex]\implies w^{1/2} = \pm \dfrac{\sqrt7}2 \exp\left(\dfrac i2 \tan^{-1}(4\sqrt3)\right) = \pm \dfrac{2+\sqrt3\,i}2[/tex]
Now, taking square roots on both sides, we have
[tex]z^2 + \dfrac12 = \pm w^{1/2}[/tex]
[tex]z^2 = \dfrac{1+\sqrt3\,i}2 \text{ or } z^2 = -\dfrac{3+\sqrt3\,i}2[/tex]
Use de Moivre's theorem again to take square roots on both sides.
[tex]w_1 = \dfrac{1+\sqrt3\,i}2 = \exp\left(i\dfrac\pi3\right)[/tex]
[tex]\implies z = {w_1}^{1/2} = \pm \exp\left(i\dfrac\pi6\right) = \boxed{\pm \dfrac{\sqrt3 + i}2}[/tex]
[tex]w_2 = -\dfrac{3+\sqrt3\,i}2 = \sqrt3 \, \exp\left(-i \dfrac{5\pi}6\right)[/tex]
[tex]\implies z = {w_2}^{1/2} = \boxed{\pm \sqrt[4]{3} \, \exp\left(-i\dfrac{5\pi}{12}\right)}[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.