Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
1) cos (θ / 2) = √[(1 + cos θ) / 2], sin (θ / 2) = √[(1 - cos θ) / 2], tan (θ / 2) = √[(1 - cos θ) / (1 + cos θ)]
2) (x, y) → (r · cos θ, r · sin θ), where r = √(x² + y²).
3) The point (x, y) = (2, 3) is equivalent to the point (r, θ) = (√13, 56.309°). The point (r, θ) = (4, 30°) is equivalent to the point (x, y) = (2√3, 2).
4) The linear function y = 5 · x - 8 is equivalent to the function r = - 8 / (sin θ - 5 · cos θ).
How to apply trigonometry on deriving formulas and transforming points
1) The following trigonometric formulae are used to derive the half-angle formulas:
sin² θ / 2 + cos² θ / 2 = 1 (1)
cos θ = cos² (θ / 2) - sin² (θ / 2) (2)
First, we derive the formula for the sine of a half angle:
cos θ = 2 · cos² (θ / 2) - 1
cos² (θ / 2) = (1 + cos θ) / 2
cos (θ / 2) = √[(1 + cos θ) / 2]
Second, we derive the formula for the cosine of a half angle:
cos θ = 1 - 2 · sin² (θ / 2)
2 · sin² (θ / 2) = 1 - cos θ
sin² (θ / 2) = (1 - cos θ) / 2
sin (θ / 2) = √[(1 - cos θ) / 2]
Third, we derive the formula for the tangent of a half angle:
tan (θ / 2) = sin (θ / 2) / cos (θ / 2)
tan (θ / 2) = √[(1 - cos θ) / (1 + cos θ)]
2) The formulae for the conversion of coordinates in rectangular form to polar form are obtained by trigonometric functions:
(x, y) → (r · cos θ, r · sin θ), where r = √(x² + y²).
3) Let be the point (x, y) = (2, 3), the coordinates in polar form are:
r = √(2² + 3²)
r = √13
θ = atan(3 / 2)
θ ≈ 56.309°
The point (x, y) = (2, 3) is equivalent to the point (r, θ) = (√13, 56.309°).
Let be the point (r, θ) = (4, 30°), the coordinates in rectangular form are:
(x, y) = (4 · cos 30°, 4 · sin 30°)
(x, y) = (2√3, 2)
The point (r, θ) = (4, 30°) is equivalent to the point (x, y) = (2√3, 2).
4) Let be the linear function y = 5 · x - 8, we proceed to use the following substitution formulas: x = r · cos θ, y = r · sin θ
r · sin θ = 5 · r · cos θ - 8
r · sin θ - 5 · r · cos θ = - 8
r · (sin θ - 5 · cos θ) = - 8
r = - 8 / (sin θ - 5 · cos θ)
The linear function y = 5 · x - 8 is equivalent to the function r = - 8 / (sin θ - 5 · cos θ).
To learn more on trigonometric expressions: https://brainly.com/question/14746686
#SPJ1
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.