Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
9.87 seconds
The time required for this system to come to rest is equal to 9.87 seconds.
We have the following data:
Mass of gear A = 675 g to kg = 0.675 kg.
Radius of gear A = 40 mm to m = 0.04 m.
Mass of gear C = 3.6 kg.
Radius of gear C = 100 mm to m = 0.1 m.
How can I calculate the time needed?
We would need to figure out the moment of inertia for gears A and C in order to compute the time needed for this system to come to rest.
Mathematically, the following formula can be used to determine the moment of inertia for a gear:
I = mr²
Where:
m is the mass.
r is the radius.
We have, For gear A:
I = mr²
I = 0.675 × 0.04²
I = 0.675 × 0.0016
I = 1.08 × 10⁻³ kg·m².
We have, For gear C:
I = mr²
I = 3.6 × 0.1²
I = 3.6 × 0.01
I = 0.036 kg·m².
The initial angular velocity of gear C would therefore be converted as follows from rotations per minute (rpm) to radians per second (rad/s):
ωc₁ = 2000 × 2π/60
ωc₁ = 4000π/60
ωc₁ = 209.44 rad/s.
Also, the initial angular velocity of gears A and B is given by:
ωA₁ = ωB₁ = rc/rA × (ωc₁)
ωA₁ = ωB₁ = 0.15/0.06 × (209.44)
ωA₁ = ωB₁ = 2.5 × (209.44)
ωA₁ = ωB₁ = 523.60 rad/s.
Taking the moment about A, we have:
I_A·ωA₁ + rA∫F_{AC}dt - M(f)_A·t = 0
On Substituting the given parameters into the formula, we have;
(1.08 × 10⁻³)·(523.60) + 0.06∫F_{AC}dt - 0.15t = 0
0.15t - 0.06∫F_{AC}dt = 0.56549 ----->equation 1.
Similarly, the moment about B is given by:
0.15t - 0.06∫F_{BC}dt = 0.56549 ------>equation 2.
Note: Let x = ∫F_{BC}dt + ∫F_{AC}dt
Adding eqn. 1 & eqn. 2, we have:
0.3t - 0.06x = (0.56549) × 2
0.3t - 0.06x = 1.13098 ------>equation 3.
Taking the moment about A, we have:
Ic·ωc₁ - rC∫F_{AC}dt - rC∫F_{BC}dt - Mc(f)_A·t = 0
0.036(209.44) - 0.3t - 0.15(∫F_{BC}dt + ∫F_{AC}dt) = 0
0.3t + 0.15x = 7.5398 ------->equation 4.
Solving eqn. 3 and eqn. 4 simultaneously, we have:
x = 30.5 Ns.
Time, t = 9.87 seconds.
To learn more about moment of inertia visit:
https://brainly.com/question/15246709
#SPJ4
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.