Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
9.87 seconds
The time required for this system to come to rest is equal to 9.87 seconds.
We have the following data:
Mass of gear A = 675 g to kg = 0.675 kg.
Radius of gear A = 40 mm to m = 0.04 m.
Mass of gear C = 3.6 kg.
Radius of gear C = 100 mm to m = 0.1 m.
How can I calculate the time needed?
We would need to figure out the moment of inertia for gears A and C in order to compute the time needed for this system to come to rest.
Mathematically, the following formula can be used to determine the moment of inertia for a gear:
I = mr²
Where:
m is the mass.
r is the radius.
We have, For gear A:
I = mr²
I = 0.675 × 0.04²
I = 0.675 × 0.0016
I = 1.08 × 10⁻³ kg·m².
We have, For gear C:
I = mr²
I = 3.6 × 0.1²
I = 3.6 × 0.01
I = 0.036 kg·m².
The initial angular velocity of gear C would therefore be converted as follows from rotations per minute (rpm) to radians per second (rad/s):
ωc₁ = 2000 × 2π/60
ωc₁ = 4000π/60
ωc₁ = 209.44 rad/s.
Also, the initial angular velocity of gears A and B is given by:
ωA₁ = ωB₁ = rc/rA × (ωc₁)
ωA₁ = ωB₁ = 0.15/0.06 × (209.44)
ωA₁ = ωB₁ = 2.5 × (209.44)
ωA₁ = ωB₁ = 523.60 rad/s.
Taking the moment about A, we have:
I_A·ωA₁ + rA∫F_{AC}dt - M(f)_A·t = 0
On Substituting the given parameters into the formula, we have;
(1.08 × 10⁻³)·(523.60) + 0.06∫F_{AC}dt - 0.15t = 0
0.15t - 0.06∫F_{AC}dt = 0.56549 ----->equation 1.
Similarly, the moment about B is given by:
0.15t - 0.06∫F_{BC}dt = 0.56549 ------>equation 2.
Note: Let x = ∫F_{BC}dt + ∫F_{AC}dt
Adding eqn. 1 & eqn. 2, we have:
0.3t - 0.06x = (0.56549) × 2
0.3t - 0.06x = 1.13098 ------>equation 3.
Taking the moment about A, we have:
Ic·ωc₁ - rC∫F_{AC}dt - rC∫F_{BC}dt - Mc(f)_A·t = 0
0.036(209.44) - 0.3t - 0.15(∫F_{BC}dt + ∫F_{AC}dt) = 0
0.3t + 0.15x = 7.5398 ------->equation 4.
Solving eqn. 3 and eqn. 4 simultaneously, we have:
x = 30.5 Ns.
Time, t = 9.87 seconds.
To learn more about moment of inertia visit:
https://brainly.com/question/15246709
#SPJ4
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.