Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The minimum distance between the origin and the plane 3x + y + 2z = 28, using the Lagrange Multipliers is 8.73 units.
In the question, we are asked to use Lagrange multipliers to find the minimum distance between the origin and the plans 3x + y + 2z = 28.
Lagrange multipliers state that if we want to minimize a function, f(x, y, z), subject to a constraint g(x, y, z) = constant, then ∇f = λ∇g.
We want to minimize the distance, and the distance formula says that the distance from the origin to a point (x, y, z), is given as:
D = √(x² + y² + z²), which can also be shown as:
D² = x² + y² + z².
The gradient of this function is: (2x + 2y + 2z), which needs to be equal to the gradient of the constraint equation multiplied by the constant, λ, that is, λ(3, 1, 2), which gives:
2x = 3λ, or, x = (3/2)λ,
2y = λ, or, y = λ/2, and,
2z = 2λ, or, z = λ.
Substituting these in the equation of the plane, 3x + y + 2z = 28, we get:
3(3/2)λ + λ/2 + λ = 28,
or, 6λ = 28,
or, λ = 28/6 = 14/3.
Thus, we get:
x = (3/2)λ = 7,
y = λ/2 = 7/3, and,
z = λ = 14/3.
Substituting these in the distance formula, we get:
D = √(7² + (7/3)² + (14/3)²) = √(49 + 49/9 + 196/9) = √(686/9) = 8.73.
Thus, the minimum distance between the origin and the plane 3x + y + 2z = 28, using the Lagrange Multipliers is 8.73 units.
Learn more about the Lagrange Multipliers at
https://brainly.com/question/15019779
#SPJ1
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.