Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The statement that "σ(n) < 2n holds true for all n of the form n = p²" has been proved.
Let p be any prime number, and let σ(n) be the sum of all positive divisors of the integer n.
As p is a prime number, and 2 is the smallest prime number, so, p[tex]\geq[/tex]2
So, the positive divisors of the integer n are: 1,p,p².
As σ(n) represents the sum of all positive divisors of the integer n.
σ(n)=1+p+p²
In order to prove that σ(n) < 2n,for all n of the form n = p².
1+p+p²<2p²
p²-p-1>0
It is know that, p[tex]\geq[/tex]2.
So, p²-p-1[tex]\geq[/tex]1
Thus, σ(n) < 2n holds true for all n of the form n = p².
Learn more about prime numbers here:
https://brainly.com/question/145452
#SPJ1
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.