Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Assuming you mean [tex]f(x,y) = xy^2[/tex] over the domain
[tex]D = \left\{(x,y) ~:~ x\ge0 \text{ and } y\ge0 \text{ and } x^2 + y^2 \le 3\right\}[/tex]
we first observe that [tex]f(x,y) = 0[/tex] for all [tex](x,y)[/tex] on the coordinate axes.
There are no critical points elsewhere in the interior of [tex]D[/tex], since
[tex]\dfrac{\partial f}{\partial x} = y^2 = 0 \implies y=0[/tex]
[tex]\dfrac{\partial f}{\partial y} = 2xy = 0 \implies x = 0 \text{ or } y = 0[/tex]
Parameterize the circular arc boundary by [tex]x=\sqrt3\cos(t)[/tex] and [tex]y=\sqrt3\sin(t)[/tex], where [tex]0\le t\le\frac\pi2[/tex]. Then
[tex]f(x(t), y(t)) = g(t) = 3\sqrt3 \cos(t) \sin^2(t) = 3\sqrt 3 (\cos(t) - \cos^3(t))[/tex]
Find the critical points of [tex]g[/tex].
[tex]g'(t) = -3\sqrt3 \sin(t) + 9\sqrt3 \cos^2(t) \sin(t) = 0[/tex]
[tex]-3 \sin(t) (1 - 3 \cos^2(t)) = 0[/tex]
[tex]\sin(t) = 0 \text{ or } 1 - 3 \cos^2(t) = 0[/tex]
[tex]\sin(t) = 0 \text{ or } \cos^2(t) = \dfrac13[/tex]
[tex]\sin(t) = 0 \text{ or } \cos(t) = \pm\dfrac1{\sqrt3}[/tex]
In the first case, we get
[tex]t = \sin^{-1}(0) + 2n\pi \text{ or } t = \pi - \sin^{-1}(0) + 2n\pi[/tex]
where [tex]n[/tex] is an integer; the only solution on the boundary of [tex]D[/tex] is [tex]t=0[/tex] corresponding to the point [tex](\sqrt3,0)[/tex].
In the second case, we get
[tex]t = \cos^{-1}\left(\dfrac1{\sqrt3}\right) + 2n\pi \text{ or } t = -\cos^{-1}\left(\dfrac1{\sqrt3}\right) + 2n\pi[/tex]
with only one relevant solution at [tex]t=\cos^{-1}\left(\frac1{\sqrt3}\right)[/tex] corresponding to [tex](1,\sqrt2)[/tex].
In the third case, we get
[tex]t = \cos^{-1}\left(-\dfrac1{\sqrt3}\right) + 2n\pi \text{ or } t = -\cos^{-1}\left(\dfrac1{\sqrt3}\right) + 2n\pi[/tex]
but there is no [tex]t[/tex] in this family of solutions such that [tex]0\le t\le\frac\pi2[/tex].
So, we find
[tex]\min\left\{xy^2 \mid (x,y) \in D\right\} = 0 \text{ at } (0,0)[/tex]
(but really any point on either axis works)
[tex]\max \left\{xy^2 \mid (x,y) \in D\right\} = 2 \text{ at } (1,\sqrt2)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.