Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Assuming you mean [tex]f(x,y) = xy^2[/tex] over the domain
[tex]D = \left\{(x,y) ~:~ x\ge0 \text{ and } y\ge0 \text{ and } x^2 + y^2 \le 3\right\}[/tex]
we first observe that [tex]f(x,y) = 0[/tex] for all [tex](x,y)[/tex] on the coordinate axes.
There are no critical points elsewhere in the interior of [tex]D[/tex], since
[tex]\dfrac{\partial f}{\partial x} = y^2 = 0 \implies y=0[/tex]
[tex]\dfrac{\partial f}{\partial y} = 2xy = 0 \implies x = 0 \text{ or } y = 0[/tex]
Parameterize the circular arc boundary by [tex]x=\sqrt3\cos(t)[/tex] and [tex]y=\sqrt3\sin(t)[/tex], where [tex]0\le t\le\frac\pi2[/tex]. Then
[tex]f(x(t), y(t)) = g(t) = 3\sqrt3 \cos(t) \sin^2(t) = 3\sqrt 3 (\cos(t) - \cos^3(t))[/tex]
Find the critical points of [tex]g[/tex].
[tex]g'(t) = -3\sqrt3 \sin(t) + 9\sqrt3 \cos^2(t) \sin(t) = 0[/tex]
[tex]-3 \sin(t) (1 - 3 \cos^2(t)) = 0[/tex]
[tex]\sin(t) = 0 \text{ or } 1 - 3 \cos^2(t) = 0[/tex]
[tex]\sin(t) = 0 \text{ or } \cos^2(t) = \dfrac13[/tex]
[tex]\sin(t) = 0 \text{ or } \cos(t) = \pm\dfrac1{\sqrt3}[/tex]
In the first case, we get
[tex]t = \sin^{-1}(0) + 2n\pi \text{ or } t = \pi - \sin^{-1}(0) + 2n\pi[/tex]
where [tex]n[/tex] is an integer; the only solution on the boundary of [tex]D[/tex] is [tex]t=0[/tex] corresponding to the point [tex](\sqrt3,0)[/tex].
In the second case, we get
[tex]t = \cos^{-1}\left(\dfrac1{\sqrt3}\right) + 2n\pi \text{ or } t = -\cos^{-1}\left(\dfrac1{\sqrt3}\right) + 2n\pi[/tex]
with only one relevant solution at [tex]t=\cos^{-1}\left(\frac1{\sqrt3}\right)[/tex] corresponding to [tex](1,\sqrt2)[/tex].
In the third case, we get
[tex]t = \cos^{-1}\left(-\dfrac1{\sqrt3}\right) + 2n\pi \text{ or } t = -\cos^{-1}\left(\dfrac1{\sqrt3}\right) + 2n\pi[/tex]
but there is no [tex]t[/tex] in this family of solutions such that [tex]0\le t\le\frac\pi2[/tex].
So, we find
[tex]\min\left\{xy^2 \mid (x,y) \in D\right\} = 0 \text{ at } (0,0)[/tex]
(but really any point on either axis works)
[tex]\max \left\{xy^2 \mid (x,y) \in D\right\} = 2 \text{ at } (1,\sqrt2)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.