Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Best guess for the function is
[tex]\displaystyle f(x) = \sum_{n=1}^\infty \frac{x^n}{n^2}[/tex]
By the ratio test, the series converges for
[tex]\displaystyle \lim_{n\to\infty} \left|\frac{x^{n+1}}{(n+1)^2} \cdot \frac{n^2}{x^n}\right| = |x| \lim_{n\to\infty} \frac{n^2}{(n+1)^2} = |x| < 1[/tex]
When [tex]x=1[/tex], [tex]f(x)[/tex] is a convergent [tex]p[/tex]-series.
When [tex]x=-1[/tex], [tex]f(x)[/tex] is a convergent alternating series.
So, the interval of convergence for [tex]f(x)[/tex] is the closed interval [tex]\boxed{-1 \le x \le 1}[/tex].
The derivative of [tex]f[/tex] is the series
[tex]\displaystyle f'(x) = \sum_{n=1}^\infty \frac{nx^{n-1}}{n^2} = \frac1x \sum_{n=1}^\infty \frac{x^n}n[/tex]
which also converges for [tex]|x|<1[/tex] by the ratio test:
[tex]\displaystyle \lim_{n\to\infty} \left|\frac{x^{n+1}}{n+1} \cdot \frac n{x^n}\right| = |x| \lim_{n\to\infty} \frac{n}{n+1} = |x| < 1[/tex]
When [tex]x=1[/tex], [tex]f'(x)[/tex] becomes the divergent harmonic series.
When [tex]x=-1[/tex], [tex]f'(x)[/tex] is a convergent alternating series.
The interval of convergence for [tex]f'(x)[/tex] is then the closed-open interval [tex]\boxed{-1 \le x < 1}[/tex].
Differentiating [tex]f[/tex] once more gives the series
[tex]\displaystyle f''(x) = \sum_{n=1}^\infty \frac{n(n-1)x^{n-2}}{n^2} = \frac1{x^2} \sum_{n=1}^\infty \frac{(n-1)x^n}{n} = \frac1{x^2} \left(\sum_{n=1}^\infty x^n - \sum_{n=1}^\infty \frac{x^n}n\right)[/tex]
The first series is geometric and converges for [tex]|x|<1[/tex], endpoints not included.
The second series is [tex]f'(x)[/tex], which we know converges for [tex]-1\le x<1[/tex].
Putting these intervals together, we see that [tex]f''(x)[/tex] converges only on the open interval [tex]\boxed{-1 < x < 1}[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.