At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The de Broglie wavelength of the particle is 1.578*10^-3nm.
To find the answer, we have to know about the de Broglie wavelength.
How to find the de Broglie wavelength?
- We have the expression for de Broglie wavelength as,
[tex]wavelength=\frac{h}{P} =\frac{h}{mv}[/tex]
where, h is the plank's constant, m is the mass and v is the velocity.
- It is given that,
[tex]m=3.5*10^{-28}kg\\a=2.4*10^7m/s^2\\t=5s\\h=6.63*10^{-34}Js[/tex]
- Substituting the values, we get,
[tex]wavelength=\frac{6.63*10^{-34}}{3.5*10^{-28}*2.4*10^7*5}=1.578*10^{-14}m\\\\ wavelength=1.578*10^{-3}nm.[/tex]
Thus, we can conclude that, the de Broglie wavelength of the particle is 1.578*10^-3nm.
Learn more about the the de Broglie wavelength here:
https://brainly.com/question/16595523
#SPJ4
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.