Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
336 ways
Step-by-step explanation:
Use nPk which is [tex]\frac{n!}{(n-k)!}[/tex]. This is [tex]\frac{8!}{5!}[/tex]. This becomes 8×7×6 as the 8! and 5! cancel out. 8×7×6 is 336.
Total number of possible 3-topping pizzas are 336 ways.
How do you calculate the number of possible ways something can be arranged?
In more general terms, if we have n items total and want to pick k in a certain order, we get: n! / (n – k)! And this is the permutation formula: The number of ways k items can be ordered from n items: P(n,k) = n (n – k)!
Given that,
Total number of items n = 8
number of picking item k = 3
Now,
p(n,k) = [tex]\frac{n!}{(n -k)!}[/tex]
p(8,5) = [tex]\frac{8!}{(8 -3)!}[/tex]
= [tex]\frac{8!}{5!}[/tex]
= [tex]\frac{8.7.6.5! }{5! }[/tex]
= 8 × 7 ×6
p(8,5) = 336 ways
Hence, Total number of possible 3-topping pizzas are 336 ways.
To learn more about number of Possible ways from the given link:
https://brainly.com/question/4658834
#SPJ4
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.