Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Using the Poisson distribution, there is a 0.8335 = 83.35% probability that 2 or fewer will be stolen.
What is the Poisson distribution?
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by:
[tex]P(X = x) = \frac{e^{-\mu}\mu^{x}}{(x)!}[/tex]
The parameters are:
- x is the number of successes
- e = 2.71828 is the Euler number
- [tex]\mu[/tex] is the mean in the given interval.
The probability that a rental car will be stolen is 0.0004, hence, for 3500 cars, the mean is:
[tex]\mu = 3500 \times 0.0004 = 1.4[/tex]
The probability that 2 or fewer cars will be stolen is:
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
In which:
[tex]P(X = x) = \frac{e^{-\mu}\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-1.4}1.4^{0}}{(0)!} = 0.2466[/tex]
[tex]P(X = 1) = \frac{e^{-1.4}1.4^{1}}{(1)!} = 0.3452[/tex]
[tex]P(X = 2) = \frac{e^{-1.4}1.4^{2}}{(2)!} = 0.2417[/tex]
Then:
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.2466 + 0.3452 + 0.2417 = 0.8335[/tex]
0.8335 = 83.35% probability that 2 or fewer will be stolen.
More can be learned about the Poisson distribution at https://brainly.com/question/13971530
#SPJ1
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.