Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

A mass weighing 16 pounds is attached to a spring whose spring constant is 25 lb/ft. what is the period of simple harmonic motion?

Sagot :

The time period of the spring - mass system undergoing simple harmonic motion is 5.024 seconds.

We have a mass weighing 16 pounds which is attached to a spring whose spring constant is 25 lb/ft . This complete spring - mass system is undergoing simple harmonic motion.

We have to calculate the time period of this simple harmonic motion.

What is the formula to calculate the Time period of a spring - mass system performing Simple harmonic motion?

The formula to calculate the time period of a spring - mass system undergoing simple harmonic motion is -

[tex]T=2\pi \sqrt{\frac{m}{k} }[/tex]

Where -

T is the time period of spring - mass simple harmonic motion.

m is the mass of body

k is the spring constant

In the question given -

mass (m) = 16 pounds

Spring constant (k) = 25 lb/ft

Substituting the values in the formula above -

T =  [tex]2\pi \sqrt{\frac{16}{25} }[/tex]  = [tex]\frac{2\pi \times4}{5}[/tex]  = 5.024 seconds

Hence, the time period of the spring - mass system undergoing simple harmonic motion is 5.024 seconds.

To solve more questions on spring - mass system, visit the link below -

brainly.com/question/13107443

#SPJ4

We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.