Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
0.9544 = 95.44% of scores lie between 220 and 380 points.
Normal distribution problems can be solved using the Z-score formula.
With a set of means and standard deviations, the Z-score for measure X is given by: After finding the Z-score, look at the Z-score table to find the p-value associated with that Z-score. This p-value is the probability that the value of the measure is less than X. H. Percentile of X. Subtract 1 from the p-value to get the probability that the value of the measure is greater than X.
[tex]z = \frac{x - \mu}{\sigma} \,[/tex]
We are given mean 300, standard deviation 40.
This means that µ= 300, σ = 40
What proportion of scores lie between 220 and 380 points?
This is the p-value of Z when X = 380 subtracted by the p-value of Z when X = 220.
X = 380
[tex]z = \frac{x - \mu}{\sigma} \,[/tex]
Z= (380-300)/40
Z= 2
Z=2 has a p-value of 0.9772.
X=300
[tex]z = \frac{x - \mu}{\sigma} \,[/tex]
Z= (220-380)/40
Z=-2
Z=-2 has a p-value of 0.9772.
0,9772 - 0,0228 = 0,9544
0.9544 = 95.44% of scores lie between 220 and 380 points.
For more information about normal distribution, visit https://brainly.com/question/4079902
#SPJ1
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.