Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The age of rock that is containing 0.628 g Uranium-238 is 2032631864.35 years.
What is half-life?
Half-life can be given as the time required by the object to reduced to half of its initial concentration. The concentration remained can be given as:
Final concentration = Initial concentration * 1/2 ^ (t/t1/2)
The initial concentration of rock has been the remaining uranium-238 and lead-206 cumulative concentration. Thus, the initial concentration is given as:
Initial concentration = Uranium-238 + Lead-206
Initial concentration = 0.068 g + 0.025 g
Initial concentration = 0.093g
The final concentration of Uranium-238 remained = 0.68 g
The half life given = 4.5 × 10⁹ years
The age (t) of the rock can be given as:
[tex]0.068=0.093\left(\frac{1}{2}\right)^{\frac{t}{4.5\times \:10^9}}\\\\\frac{t\times \:10^{-9}}{4.5}\ln \left(\frac{1}{2}\right)=\ln \left(\frac{68}{93}\right)\\\\t=2032631864.35961[/tex]
Thus, the age of rock that has remaining 0.068 g Uranium-238 is 2032631864.35 years.
Learn more about half-life, here:
https://brainly.com/question/24710827
#SPJ4
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.