Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Use the laplace transform to solve the given initial-value problem. y'' − 4y' + 4y = t3e2t, y(0) = 0, y'(0) = 0

Sagot :

The Laplace of the given equation is [tex]y=-\frac{15e^2}{8}e^{2t}+\left(-3e^2+\frac{15e^2}{4}\right)e^{2t}t+\frac{e^2t^4}{4}+e^2t^3+\frac{9e^2t^2}{4}+3e^2t+\frac{15e^2}{8}[/tex].

According to the statement

we have given that the equation and we have to solve this problem with the help of the Laplace transform.

So, According to the statement

the given equation is

y'' − 4y' + 4y = t^3e^2t, y(0) = 0, y'(0) = 0

And the Laplace transform is an integral transform method which is particularly useful in solving linear ordinary differential equations.

Firstly fill the value of the Laplace of the second order derivative and put x = 0 in the equation

And same it with the first order of the derivative.

And then the Laplace of the equation become

[tex]y=-\frac{15e^2}{8}e^{2t}+\left(-3e^2+\frac{15e^2}{4}\right)e^{2t}t+\frac{e^2t^4}{4}+e^2t^3+\frac{9e^2t^2}{4}+3e^2t+\frac{15e^2}{8}[/tex]

So, The Laplace of the given equation is [tex]y=-\frac{15e^2}{8}e^{2t}+\left(-3e^2+\frac{15e^2}{4}\right)e^{2t}t+\frac{e^2t^4}{4}+e^2t^3+\frac{9e^2t^2}{4}+3e^2t+\frac{15e^2}{8}[/tex]

Learn more about Laplace transform here

https://brainly.com/question/17062586

#SPJ4

We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.