Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The function position of the particle is s(t) = (1 / 12) · t⁴ + (7 / 6) · t³ + 3 · t² + (63 / 4) · t.
What are the parametric equations for the motion of a particle?
By mechanical physics we know that the function velocity is the integral of function acceleration and the function position is the integral of function velocity. Hence, we need to integrate twice to obtain the function position of the particle:
Velocity
v(t) = ∫ t² dt - 7 ∫ t dt + 6 ∫ dt
v(t) = (1 / 3) · t³ - (7 / 2) · t² + 6 · t + C₁
Position
s(t) = (1 / 3) ∫ t³ dt - (7 / 2) ∫ t² dt + 6 ∫ t dt + C₁ ∫ dt
s(t) = (1 / 12) · t⁴ + (7 / 6) · t³ + 3 · t² + C₁ · t + C₂
Now we find the values of the integration constants by solving the following system of linear equations:
0 = C₂
63 / 4 = C₁ + C₂
The solution of the system is C₁ = 63 / 4 and C₂ = 0. The function position of the particle is s(t) = (1 / 12) · t⁴ + (7 / 6) · t³ + 3 · t² + (63 / 4) · t.
To learn more on parametric equations: https://brainly.com/question/9056657
#SPJ1
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.