Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The area around the given curve according to the green theorem is [tex]F. dr = 0[/tex].
According to the statement
we have to find the area enclosed by the simple closed curve that encloses the origin.
So, We know that the
The given equation is
[tex]f(x,y) = \frac{2xyi + (y^{2} - x^{2} ) j}{(x^{2} + y^{2} )^{2} }[/tex]
and
If function is in form of,
[tex]F = Pi + Qj[/tex]
and C is any positively oriented simple closed curve that encloses the origin.
Then,by use of Green's theorem
Do the partial differentiation of the given function
Then
[tex]\frac{dQ}{dx} = \frac{2x^{3} - 6xy^{2}}{(x^{2} + y^{2} )^{3}}[/tex]
and
[tex]\frac{dP}{dy} = \frac{2x^{3} - 6xy^{2}}{(x^{2} + y^{2} )^{3}}[/tex]
On substitution in Green's theorem,
We get the value
[tex]F. dr = 0[/tex]
From this it is clear that the area around the given curve is zero.
So, The area around the given curve according to the green theorem is [tex]F. dr = 0[/tex].
Learn more about Green theorem here
https://brainly.com/question/23265902
#SPJ4
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.