Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
Laplace transforms turn a Differential equation into an algebraic, so we can solve easier.
y'= pY-y(0)
y"=p²Y - py(0)- y'(0)
Substituting these in differential equation :
p²Y -py (0) -y' (0)-6(pY-y(0)) + 13Y
Substituting in the initial conditions given , fact out Y, and get:
Y( p²-6p+13) = -3
Y=-3/ p²-6p+13
now looking this up in a table to Laplace transformation we get:
y=-3/2.e³т sin(2t)
for the last one, find the Laplace of t∧2 . which is 2/p³
pY - y(0)+ 5Y= 2/p³
Y= 2/p³(p+5)
Taking partial fractions:
Y=-2/125(p+5) + 2/125p - 2/25p² + 2/5p³
Learn more about differential equation here:
https://brainly.com/question/14620493
#SPJ4
Answer:
The integral transform that converts a function of a real variable to a function of a complex variable is called Laplace transform. first we need to substitute y' and y" in differential equation then finding Laplace transformation and at last taking partial fractions.
Given: y'= pY-y(0)
y"=p²Y - py(0)- y'(0)
Putting y' and y" in differential equation :
p²Y -py (0) -y' (0)-6(pY-y(0)) + 13Y
Substituting in the initial conditions given , fact out Y, and get:
Y( p²-6p+13) = -3
Y=-3/ p²-6p+13
by Laplace transform we get:
y=-3/2.e³т sin(2t)
for the last one, find the Laplace transform of t∧2 . which is 2/p³
pY - y(0)+ 5Y= 2/p³
Y= 2/p³(p+5)
Taking partial fractions:
Y=-2/125(p+5) + 2/125p - 2/25p² + 2/5p³
Learn more about Laplace transform here:
https://brainly.com/question/1597221
#SPJ4
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.