Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
We note that,
x/³√(1+x²) dx = (3/4) d/dx (1+x²)²ᐟ³
now we can use binomial series on (1+x²)²ᐟ³
(1+x²)²ᐟ³ = ( 1+2x²/3+((2/3)*(2/3 -1)/2) x⁴ + ((2/3)*(2/3 -1)(2/3–2)/6) x⁶ +o(x⁶) =
= 1 + 2x²/3 - x⁴/9 +4x⁶/81 +o(x⁶)
The last step is to differentiate,
x/³√(1+x²) dx = (3/4) d/dx (1+x²)²ᐟ³
= (3/4) d/dx (1 + 2x²/3 - x⁴/9 +4x⁶/81 +o(x⁶) )
= (3/4) ( 0 + (4/3)x - 4/9 x³ + 24x⁵/81 + o(x⁵))
= x - x³/3 + 2x⁵/9 + o(x⁵)
The complete Question is- How do I find the Maclaurin series using binomial series in the function f(x) = x/³√1+x^2?
Learn more about binomial series here:
https://brainly.com/question/14004514
#SPJ4
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.