At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Using the Laplace transform, the value o y' − 2y = (t − 4), y(0) = 0 is⇒y(t) = 0 e^-t + u(t -1)e^1-t
Laplace rework is an critical rework approach that is in particular useful in fixing linear normal equations. It unearths very huge applications in regions of physics, electrical engineering, control optics, arithmetic and sign processing.
y' − 2y = (t − 4),
y(0) = 0
Taking the Laplace transformation of the differential equation
⇒sY(s) - y (0) + Y(s) = e-s
⇒(s + 1)Y(s) = (0+ e^-s)/s + 1
⇒y(t) = L^-1{0/s+1} + {e ^-s/s + 1}
⇒y(t) = 0 e^-t + u(t -1)e^1-t
The Laplace remodel method, the feature within the time area is transformed to a Laplace characteristic within the frequency domain. This Laplace feature will be inside the shape of an algebraic equation and it can be solved easily.
Learn more Laplace transformation here:-brainly.com/question/14487437
#SPJ4
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.