Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

In a ruby laser, an electron jumps from a higher energy level to a lower one. if the energy difference between the two levels is 1. 8 ev, what is the wavelength of the emitted photon?

Sagot :

The wavelength of the emitted photon is([tex]\lambda[/tex])= 690nm

How can we calculate the wavelength of the emitted photon?

To calculate the wavelength of the photon we are using the formula,

[tex]\triangle E= \frac{h\times c}{\lambda}[/tex]

Or,[tex]\lambda= \frac{h\times c}{\triangle E}[/tex]

We are given here,

[tex]\triangle E[/tex]= The energy difference between the two levels = 1. 8 ev= [tex]1.8\times 1.6 \times 10^{-19}[/tex] C.

h= Planck constant = [tex]6.626\times 10^{-34}[/tex] Js.

c= speed of light = [tex]3\times10^8[/tex] m/s.

We have to find the wavelength of the emitted photon =[tex]\lambda[/tex] m.

Therefore, we substitute the known parameters in the above equation, we can find that,

[tex]\lambda= \frac{h\times c}{\triangle E}[/tex]

Or,[tex]\lambda= \frac{6.626\times 10^{-34}\times 3\times 10^8}{1.8\times 1.6 \times 10^{-19}}[/tex]

Or,[tex]\lambda= 690\times 10^{-9}[/tex] m

Or,[tex]\lambda[/tex]=690 nm.

From the above calculation we can conclude that the wavelength of the emitted photon is 690nm.

Learn more about ruby laser:

https://brainly.com/question/17245697

#SPJ4