Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
There is a minimum value of -81 located at (x, y) = (6, -3).
The function given to us is f(x, y) = 3y² - 3x².
The constraint given to us is 2x + y = 9.
Rearranging the constraint, we get:
2x + y = 9,
or, y = 9 - 2x.
Substituting this in the function, we get:
f(x, y) = 3y² - 3x²,
or, f(x) = 3(9 - 2x)² - 3x² = 3(81 - 36x + 4x²) - 3x² = 243 - 108x + 12x² - 3x² = 243 - 108x + 9x².
To find the extremum, we differentiate this, with respect to x, and equate that to 0.
f'(x) = - 108 + 18x ... (i)
Equating to 0, we get:
- 108 + 18x = 0,
or, 18x = 108,
or, x = 6.
Differentiating (i), with respect to x again, we get:
f''(x) = 18, which is greater than 0, showing f(x) is minimum at x = 6.
The value of y, when x = 6 is,
y = 9 - 2x,
or, y = 9 - 2*6 = 9 - 12 = -3.
The value of f(x, y) when (x, y) = (6, -3) is,
f(x, y) = 3y² - 3x²,
or, f(x, y) = 3*(-3)² - 3*6² = 3*9 - 3*36 = 27 - 108 = -81.
Thus, there is a minimum value of -81 located at (x, y) = (6, -3).
Learn more about maximum and minimum at
brainly.com/question/2437551
#SPJ4
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.