Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The minimum value of f(8) - f(3) is 20.
The maximum value of f(8) - f(3) is 25.
In the question, we are given that, 4 ≤ f'(x) ≤ 5 for all values of x.
Taking the given inequality as (i).
We are asked to find the minimum and maximum possible values of f(8) - f(3).
We multiply (i) by dx throughout, to get:
4dx ≤ f'(x)dx ≤ 5dx.
To find this, we integrate (i) in the definite interval [8, 3] with respect to dx, to get:
[tex]\int_{3}^{8}4dx \leq \int_{3}^{8}f'(x)dx \leq \int_{3}^{8}5dx\\\Rightarrow [4x]_{3}^{8} \leq [f(x)]_{3}^{8} \leq [5x]_{3}^{8}\\\Rightarrow 4*8 - 4*3 \leq f(8)-f(3) \leq 5*8 - 5*3\\\Rightarrow 20 \leq f(8) -f(3) \leq 25[/tex]
Thus, the minimum value of f(8) - f(3) is 20.
The maximum value of f(8) - f(3) is 25.
Learn more about definite integrals at
https://brainly.com/question/17074932
#SPJ4
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.