Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
It looks like the system is
[tex]x' = \begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} x + \begin{bmatrix} \sin(t) \\ -2 \cos(t) \end{bmatrix}[/tex]
Compute the eigenvalues of the coefficient matrix.
[tex]\begin{vmatrix} -1 - \lambda & 5 \\ -1 & 1 - \lambda \end{vmatrix} = \lambda^2 + 4 = 0 \implies \lambda = \pm2i[/tex]
For [tex]\lambda = 2i[/tex], the corresponding eigenvector is [tex]\eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top[/tex] such that
[tex]\begin{bmatrix} -1 - 2i & 5 \\ -1 & 1 - 2i \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}[/tex]
Notice that the first row is 1 + 2i times the second row, so
[tex](1+2i) \eta_1 - 5\eta_2 = 0[/tex]
Let [tex]\eta_1 = 1-2i[/tex]; then [tex]\eta_2=1[/tex], so that
[tex]\begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} = 2i \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix}[/tex]
The eigenvector corresponding to [tex]\lambda=-2i[/tex] is the complex conjugate of [tex]\eta[/tex].
So, the characteristic solution to the homogeneous system is
[tex]x = C_1 e^{2it} \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} + C_2 e^{-2it} \begin{bmatrix} 1 + 2i \\ 1 \end{bmatrix}[/tex]
The characteristic solution contains [tex]\cos(2t)[/tex] and [tex]\sin(2t)[/tex], both of which are linearly independent to [tex]\cos(t)[/tex] and [tex]\sin(t)[/tex]. So for the nonhomogeneous part, we consider the ansatz particular solution
[tex]x = \cos(t) \begin{bmatrix} a \\ b \end{bmatrix} + \sin(t) \begin{bmatrix} c \\ d \end{bmatrix}[/tex]
Differentiating this and substituting into the ODE system gives
[tex]-\sin(t) \begin{bmatrix} a \\ b \end{bmatrix} + \cos(t) \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} \left(\cos(t) \begin{bmatrix} a \\ b \end{bmatrix} + \sin(t) \begin{bmatrix} c \\ d \end{bmatrix}\right) + \begin{bmatrix} \sin(t) \\ -2 \cos(t) \end{bmatrix}[/tex]
[tex]\implies \begin{cases}a - 5c + d = 1 \\ b - c + d = 0 \\ 5a - b + c = 0 \\ a - b + d = -2 \end{cases} \implies a=\dfrac{11}{41}, b=\dfrac{38}{41}, c=-\dfrac{17}{41}, d=-\dfrac{55}{41}[/tex]
Then the general solution to the system is
[tex]x = C_1 e^{2it} \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} + C_2 e^{-2it} \begin{bmatrix} 1 + 2i \\ 1 \end{bmatrix} + \dfrac1{41} \cos(t) \begin{bmatrix} 11 \\ 38 \end{bmatrix} - \dfrac1{41} \sin(t) \begin{bmatrix} 17 \\ 55 \end{bmatrix}[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.