At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Use the method of undetermined coefficients to solve the given nonhomogeneous system. x' = −1 5 −1 1 x + sin(t) −2 cos(t)

Sagot :

It looks like the system is

[tex]x' = \begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} x + \begin{bmatrix} \sin(t) \\ -2 \cos(t) \end{bmatrix}[/tex]

Compute the eigenvalues of the coefficient matrix.

[tex]\begin{vmatrix} -1 - \lambda & 5 \\ -1 & 1 - \lambda \end{vmatrix} = \lambda^2 + 4 = 0 \implies \lambda = \pm2i[/tex]

For [tex]\lambda = 2i[/tex], the corresponding eigenvector is [tex]\eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top[/tex] such that

[tex]\begin{bmatrix} -1 - 2i & 5 \\ -1 & 1 - 2i \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}[/tex]

Notice that the first row is 1 + 2i times the second row, so

[tex](1+2i) \eta_1 - 5\eta_2 = 0[/tex]

Let [tex]\eta_1 = 1-2i[/tex]; then [tex]\eta_2=1[/tex], so that

[tex]\begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} = 2i \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix}[/tex]

The eigenvector corresponding to [tex]\lambda=-2i[/tex] is the complex conjugate of [tex]\eta[/tex].

So, the characteristic solution to the homogeneous system is

[tex]x = C_1 e^{2it} \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} + C_2 e^{-2it} \begin{bmatrix} 1 + 2i \\ 1 \end{bmatrix}[/tex]

The characteristic solution contains [tex]\cos(2t)[/tex] and [tex]\sin(2t)[/tex], both of which are linearly independent to [tex]\cos(t)[/tex] and [tex]\sin(t)[/tex]. So for the nonhomogeneous part, we consider the ansatz particular solution

[tex]x = \cos(t) \begin{bmatrix} a \\ b \end{bmatrix} + \sin(t) \begin{bmatrix} c \\ d \end{bmatrix}[/tex]

Differentiating this and substituting into the ODE system gives

[tex]-\sin(t) \begin{bmatrix} a \\ b \end{bmatrix} + \cos(t) \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} \left(\cos(t) \begin{bmatrix} a \\ b \end{bmatrix} + \sin(t) \begin{bmatrix} c \\ d \end{bmatrix}\right) + \begin{bmatrix} \sin(t) \\ -2 \cos(t) \end{bmatrix}[/tex]

[tex]\implies \begin{cases}a - 5c + d = 1 \\ b - c + d = 0 \\ 5a - b + c = 0 \\ a - b + d = -2 \end{cases} \implies a=\dfrac{11}{41}, b=\dfrac{38}{41}, c=-\dfrac{17}{41}, d=-\dfrac{55}{41}[/tex]

Then the general solution to the system is

[tex]x = C_1 e^{2it} \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} + C_2 e^{-2it} \begin{bmatrix} 1 + 2i \\ 1 \end{bmatrix} + \dfrac1{41} \cos(t) \begin{bmatrix} 11 \\ 38 \end{bmatrix} - \dfrac1{41} \sin(t) \begin{bmatrix} 17 \\ 55 \end{bmatrix}[/tex]