Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
For function k(x, y) = -x² - y² + 4x + 4y,
the absolute minimum is 0 and the absolute maximum is 6
For given question,
We have been given a function k(x, y) = -x² - y² + 4x + 4y
We need to find the absolute maximum and minimum values of the function, subject to the constraints 0 ≤ x ≤ 3, y ≥ 0, and x + y ≤ 6
First we find the partial derivative of function k(x, y) with respect to x.
⇒ [tex]k_x=-2x+4[/tex]
Now, we find the partial derivative of function k(x, y) with respect to y.
[tex]\Rightarrow k_y=-2y+4[/tex]
To find the critical point:
consider [tex]k_x=0[/tex] and [tex]k_y=0[/tex]
⇒ -2x + 4 = 0 and -2y + 4 = 0
⇒ x = 2 and y = 2
This means, the critical point of function is (2, 2)
We have been given constraints 0 ≤ x ≤ 3, y ≥ 0, and x + y ≤ 6
Consider k(0, 0)
⇒ k(0, 0) = -0² - 0² + 4(0) + 4(0)
⇒ k(0, 0) = 0
Consider k(3, 3)
⇒ k(3, 3) = -3² - 3² + 4(3) + 4(3)
⇒ k(3, 3) = -9 - 9 + 12 + 12
⇒ k(3, 3) = -18 + 24
⇒ k(3, 3) = 6
Therefore, for function k(x, y) = -x² - y² + 4x + 4y,
the absolute minimum is 0 and the absolute maximum is 6
Learn more about the absolute maximum and absolute minimum values of the function here:
brainly.com/question/16270755
#SPJ4
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.