Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The value of t obtained is 4.76
Given,
Mean of group 1, [tex]M_{1}[/tex] = 10
Mean of group 2, [tex]M_{2}[/tex] = 12
[tex]SS_{1}[/tex] = 5
[tex]SS_{2}[/tex] = 8
Number of individuals per group, n = 6
The degrees of freedom are calculated as:
[tex]df = (n_{1} -1)+(n_{2} -1)[/tex] = ( 8-1) + (8-1) = 7 + 7 = 14
The difference between sample means [tex]M_{d}[/tex] is:
[tex]M_{d}[/tex] = [tex]M_{1} -M_{2}[/tex] = 10 - 12 = 2
Here n is equal for both groups which is = 8
Now,
The standard deviation of sample 1 :
[tex]s_{1} =\sqrt{\frac{SS_{1} }{n_{1} -1} } = \sqrt{\frac{5}{8-1} } = \sqrt{\frac{5}{7} } = 0.85[/tex]
The standard deviation of sample 2 :
[tex]s_{2}= \sqrt{\frac{SS_{2} }{n_{2}-1 } } = \sqrt{\frac{8}{8-1} } = \sqrt{\frac{8}{7} } = 1.07[/tex]
Now, we have to calculate the standard error for the difference of the means.
MSE = [tex]\frac{(n_{1}-1)s^{2} _{1}+(n_{2}-1)s^{2} _{2} }{(n_{1}-1)+(n_{2}-1) }[/tex]
= [tex]\frac{(8-1)(0.85^{2})+(8-1)(1.07^{2}) }{(8-1)+(8-1)}[/tex]
= [tex]\frac{10.1318}{14}[/tex]
MSE = 0.7237
Then, the standard error can be calculated as:
[tex]s_{M_{d} } = \sqrt{\frac{2MSE}{n} } = \sqrt{\frac{2 * 0.7237}{8} } = 0.42[/tex]
Now we can calculate t :
[tex]t=\frac{M_{d} }{s_{M_{d} } } = \frac{2}{0.42} = 4.76[/tex]
Learn more about standard deviation here : https://brainly.com/question/16403666
#SPJ4
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.