Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Confidence interval for the mean daily return if it is normally distributed:
⁻x [tex]-z_{\alpha }[/tex](σ/[tex]\sqrt{n}[/tex]) ≤ μ ≤ ⁻x + [tex]z_{\alpha }[/tex] ( σ/[tex]\sqrt{n}[/tex])
Based on the Central Limit Theorem's result that the sampling distribution of the sample means follows an essentially normal distribution, a confidence interval for a population mean is calculated when the population standard deviation is known.
Take into account the standardising equation for the sampling distribution introduced in the Central Limit Theorem discussion:
[tex]z_{1} =[/tex](⁻x - μ₋ₓ) /( σ ⁻x) = (⁻x - μ) /( σ/[tex]\sqrt{n}[/tex])
Notice that µ is substituted for µx− because we know that the expected value of µx− is µ from the Central Limit theorem and σx− is replaced with σn√/, also from the Central Limit Theorem.
In this formula we know X−, σx− and n, the sample size. (In actuality we do not know the population standard deviation, but we do have a point estimate for it, s, from the sample we took. More on this later.) What we do not know is μ or Z1. We can solve for either one of these in terms of the other. Solving for μ in terms of Z1 gives:
μ=X−±Z1 σ/[tex]\sqrt{n}[/tex]
Remembering that the Central Limit Theorem tells us that the distribution of the X¯¯¯'s, the sampling distribution for means, is normal, and that the normal distribution is symmetrical, we can rearrange terms thus:
⁻x [tex]-z_{\alpha }[/tex](σ/[tex]\sqrt{n}[/tex]) ≤ μ ≤ ⁻x + [tex]z_{\alpha }[/tex] ( σ/[tex]\sqrt{n}[/tex])
This is the formula for a confidence interval for the mean of a population.
Learn more about confidence interval here: https://brainly.com/question/13242669
#SPJ4
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.