Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Solve the given differential equation by separation of variables. dy dx = e4x 5y

Sagot :

The solution to the given differential equation [tex]\frac{dy}{dx} = e^{4x+5y}[/tex] is , [tex]\frac{e^{-5y}}{-5}=\frac{e^{4x}}{4} +c[/tex], where c is constant of integration.

For given question,

We have been given a differential equation [tex]\frac{dy}{dx} = e^{4x+5y}[/tex]

We know that for any real number a, m, n,

[tex]a^{m + n} = a^m \times a^n[/tex]

⇒ dy/dx = [tex]e^{4x}[/tex] × [tex]e^{5y}[/tex]

Separating the variables (x and its differential in one side and y and its differential in another side )

⇒ [tex]\frac{1}{e^{5y}}[/tex] dy = [tex]e^{4x}[/tex] dx

⇒ [tex]e^{-5y}[/tex] dy = [tex]e^{4x}[/tex] dx

Integrating on both the sides,

⇒ [tex]\int e^{-5y}[/tex] dy = [tex]\int e^{4x}[/tex] dx

We know that, [tex]\int e^{ax}\, dx=\frac{e^{ax}}{a} +C[/tex]

⇒ [tex]\int e^{4x}\, dx=\frac{e^{4x}}{4} +C[/tex]

and [tex]\int e^{-5y}\, dy=\frac{e^{-5y}}{-5} +C[/tex]

So the solution is, [tex]\frac{e^{-5y}}{-5}=\frac{e^{4x}}{4} +c[/tex], where c is constant of integration.

Therefore, the solution to the given differential equation [tex]\frac{dy}{dx} = e^{4x+5y}[/tex] is , [tex]\frac{e^{-5y}}{-5}=\frac{e^{4x}}{4} +c[/tex], where c is constant of integration.

Learn more about the differential equation here:

https://brainly.com/question/14620493

#SPJ4