Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The rectangular equation for given parametric equations x = 2sin(t) and y = -3cos(t) on 0 ≤ t ≤ π is [tex]\frac{x^{2} }{4} +\frac{y^2}{9} =1[/tex] which is an ellipse.
For given question,
We have been given a pair of parametric equations x = 2sin(t) and y = -3cos(t) on 0 ≤ t ≤ π.
We need to convert given parametric equations to a rectangular equation and sketch the curve.
Given parametric equations can be written as,
x/2 = sin(t) and y/(-3) = cos(t) on 0 ≤ t ≤ π.
We know that the trigonometric identity,
sin²t + cos²t = 1
⇒ (x/2)² + (- y/3)² = 1
⇒ [tex]\frac{x^{2} }{4} +\frac{y^2}{9} =1[/tex]
This represents an ellipse with center (0, 0), major axis 18 units and minor axis 8 units.
The rectangular equation is [tex]\frac{x^{2} }{4} +\frac{y^2}{9} =1[/tex]
The graph of the rectangular equation [tex]\frac{x^{2} }{4} +\frac{y^2}{9} =1[/tex] is as shown below.
Therefore, the rectangular equation for given parametric equations x = 2sint and y = -3cost on 0 ≤ t ≤ π is [tex]\frac{x^{2} }{4} +\frac{y^2}{9} =1[/tex] which is an ellipse.
Learn more about the parametric equations here:
https://brainly.com/question/14289251
#SPJ4

Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.