Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The differential equation [tex]cos(x)dx+\frac{y}{x} dy=0[/tex] is not exact.
For given question,
we have been given a differential equation [tex]cos(x)dx+\frac{y}{x} dy=0[/tex]
We have to determine given differential equation is exact or not.
Compare it with M dx + N dy = 0
⇒ M = cos(x) and N = y/x
Find the derivative of M with respect to y.
[tex]\Rightarrow M_y=-sin(x)[/tex]
Now, find the derivative of N with respect to x.
[tex]\Rightarrow N_x=\frac{-y}{x^{2} }[/tex]
Since [tex]M_y \neq N_x[/tex], given differential equation is not exact.
Therefore, the differential equation [tex]cos(x)dx+\frac{y}{x} dy=0[/tex] is not exact.
Learn more about the differential equation here:
https://brainly.com/question/14600691
#SPJ4
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.