Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Factor the cubic polynomial 6x3 – 11x2 – 12x 5. use the rational root theorem and synthetic division

Sagot :

The factorization of given cubic polynomial 6x³ - 11x² - 12x + 5 is:  

6x³ - 11x² - 12x + 5 = (x + 1)(x - [tex]\frac{5}{2}[/tex])(x - [tex]\frac{1}{3}[/tex])

For given question,

We have been given the cubic polynomial 6x³ - 11x² - 12x + 5

We need to factorize given cubic polynomial.

By the rational roots theorem, any rational zero of f(x) is expressible in the form ± [tex]\frac{p}{q}[/tex] for integers p, q with p a divisor of the constant term 5 and q a divisor of the coefficient 6 of the leading term.

Factors of p = 5: 1, 5

Factors of q = 6: 1, 2, 3, 6

That means that the only possible rational zeros are:

±{ [tex]\frac{1}{1} ,\frac{1}{2} ,\frac{1}{3} ,\frac{1}{6} ,\frac{5}{1} ,\frac{5}{2} ,\frac{5}{3} ,\frac{5}{6}[/tex] }

= ±{ [tex]1 ,\frac{1}{2} ,\frac{1}{3} ,\frac{1}{6} ,5 ,\frac{5}{2} ,\frac{5}{3} ,\frac{5}{6}[/tex] }

We need to find the exact zeros of given cubic polynomial.

For x = 1,

6(1)³ - 11(1)² - 12(1) + 5 = -12

This means, x = 1 is not a zero of given cubic polynomial.

For x = -1,

6(-1)³ - 11(-1)² - 12(-1) + 5 = 0

This means, x = -1 is a zero of given cubic polynomial and (x + 1) is a factor.

To factorize given cubic polynomial we use synthetic division.

The synthetic division (6x³ - 11x² - 12x + 5) ÷ (x + 1) is as shown in following image.

⇒ 6x³ - 11x² - 12x + 5 = (x + 1)(6x² - 17x + 5)

The factors of above quadratic polynomial 6x² - 17x + 5 are:

⇒ 6x² - 17x + 5 = (x - [tex]\frac{5}{2}[/tex])(x - [tex]\frac{1}{3}[/tex])

So, the factors of given cubic polynomial are:

⇒ 6x³ - 11x² - 12x + 5 = (x + 1)(x - [tex]\frac{5}{2}[/tex])(x - [tex]\frac{1}{3}[/tex])

Therefore, the factorization of given cubic polynomial 6x³ - 11x² - 12x + 5 is:  6x³ - 11x² - 12x + 5 = (x + 1)(x - [tex]\frac{5}{2}[/tex])(x - [tex]\frac{1}{3}[/tex])

Learn more about the polynomial here:

https://brainly.com/question/16594008

#SPJ4

View image PratikshaS