Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
We need at least 7 terms of the Maclaurin series for ln(1 + x) to estimate ln 1.4 to within 0.0001
For given question,
We have been given a function f(x) = ln(1 + x)
We need to find the estimate of In(1.4) within 0.001 by applying the function of the Maclaurin series for f(x) = In (1 + x)
The expansion of ln(1 + x) about zero is:
[tex]ln(1+x)=x-\frac{x^2}{2} + \frac{x^3}{3} -\frac{x^4}{4} +\frac{x^5}{5} -\frac{x^6}{6} +.~.~.[/tex]
where -1 ≤ x ≤ 1
To estimate the value of In(1.4), let's replace x with 0.4
[tex]\Rightarrow ln(1+0.4)=0.4-\frac{0.4^2}{2} + \frac{0.4^3}{3} -\frac{0.4^4}{4} +\frac{0.4^5}{5} -\frac{0.4^6}{6} +.~.~.[/tex]
From the above calculations, we will realize that the value of [tex]\frac{0.4^5}{5}=0.002048[/tex] and [tex]\frac{0.4^6}{6}=0.000683[/tex] which are approximately equal to 0.001
Hence, the estimate of In(1.4) to the term [tex]\frac{0.4^6}{6}[/tex] is enough to justify our claim.
Therefore, we need at least 7 terms of the Maclaurin series for function ln(1 + x) to estimate ln 1.4 to within 0.0001
Learn more about the Maclaurin series here:
https://brainly.com/question/16523296
#SPJ4
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.