Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
We need at least 7 terms of the Maclaurin series for ln(1 + x) to estimate ln 1.4 to within 0.0001
For given question,
We have been given a function f(x) = ln(1 + x)
We need to find the estimate of In(1.4) within 0.001 by applying the function of the Maclaurin series for f(x) = In (1 + x)
The expansion of ln(1 + x) about zero is:
[tex]ln(1+x)=x-\frac{x^2}{2} + \frac{x^3}{3} -\frac{x^4}{4} +\frac{x^5}{5} -\frac{x^6}{6} +.~.~.[/tex]
where -1 ≤ x ≤ 1
To estimate the value of In(1.4), let's replace x with 0.4
[tex]\Rightarrow ln(1+0.4)=0.4-\frac{0.4^2}{2} + \frac{0.4^3}{3} -\frac{0.4^4}{4} +\frac{0.4^5}{5} -\frac{0.4^6}{6} +.~.~.[/tex]
From the above calculations, we will realize that the value of [tex]\frac{0.4^5}{5}=0.002048[/tex] and [tex]\frac{0.4^6}{6}=0.000683[/tex] which are approximately equal to 0.001
Hence, the estimate of In(1.4) to the term [tex]\frac{0.4^6}{6}[/tex] is enough to justify our claim.
Therefore, we need at least 7 terms of the Maclaurin series for function ln(1 + x) to estimate ln 1.4 to within 0.0001
Learn more about the Maclaurin series here:
https://brainly.com/question/16523296
#SPJ4
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.