Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
We need at least 7 terms of the Maclaurin series for ln(1 + x) to estimate ln 1.4 to within 0.0001
For given question,
We have been given a function f(x) = ln(1 + x)
We need to find the estimate of In(1.4) within 0.001 by applying the function of the Maclaurin series for f(x) = In (1 + x)
The expansion of ln(1 + x) about zero is:
[tex]ln(1+x)=x-\frac{x^2}{2} + \frac{x^3}{3} -\frac{x^4}{4} +\frac{x^5}{5} -\frac{x^6}{6} +.~.~.[/tex]
where -1 ≤ x ≤ 1
To estimate the value of In(1.4), let's replace x with 0.4
[tex]\Rightarrow ln(1+0.4)=0.4-\frac{0.4^2}{2} + \frac{0.4^3}{3} -\frac{0.4^4}{4} +\frac{0.4^5}{5} -\frac{0.4^6}{6} +.~.~.[/tex]
From the above calculations, we will realize that the value of [tex]\frac{0.4^5}{5}=0.002048[/tex] and [tex]\frac{0.4^6}{6}=0.000683[/tex] which are approximately equal to 0.001
Hence, the estimate of In(1.4) to the term [tex]\frac{0.4^6}{6}[/tex] is enough to justify our claim.
Therefore, we need at least 7 terms of the Maclaurin series for function ln(1 + x) to estimate ln 1.4 to within 0.0001
Learn more about the Maclaurin series here:
https://brainly.com/question/16523296
#SPJ4
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.