Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
We need at least 7 terms of the Maclaurin series for ln(1 + x) to estimate ln 1.4 to within 0.0001
For given question,
We have been given a function f(x) = ln(1 + x)
We need to find the estimate of In(1.4) within 0.001 by applying the function of the Maclaurin series for f(x) = In (1 + x)
The expansion of ln(1 + x) about zero is:
[tex]ln(1+x)=x-\frac{x^2}{2} + \frac{x^3}{3} -\frac{x^4}{4} +\frac{x^5}{5} -\frac{x^6}{6} +.~.~.[/tex]
where -1 ≤ x ≤ 1
To estimate the value of In(1.4), let's replace x with 0.4
[tex]\Rightarrow ln(1+0.4)=0.4-\frac{0.4^2}{2} + \frac{0.4^3}{3} -\frac{0.4^4}{4} +\frac{0.4^5}{5} -\frac{0.4^6}{6} +.~.~.[/tex]
From the above calculations, we will realize that the value of [tex]\frac{0.4^5}{5}=0.002048[/tex] and [tex]\frac{0.4^6}{6}=0.000683[/tex] which are approximately equal to 0.001
Hence, the estimate of In(1.4) to the term [tex]\frac{0.4^6}{6}[/tex] is enough to justify our claim.
Therefore, we need at least 7 terms of the Maclaurin series for function ln(1 + x) to estimate ln 1.4 to within 0.0001
Learn more about the Maclaurin series here:
https://brainly.com/question/16523296
#SPJ4
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.