At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Find the area of the region r bounded by y = 4 1 − x2 , y = 4e−x, x = 0, and x = 1 2

Sagot :

The area of  the region bounded by [tex]y=\frac{4}{\sqrt{1-x^2} }[/tex] , [tex]y=4e^{-x}[/tex] over the interval [0, 1/2] is 0.521 square units.

For given question,

We need to find the area of the region bounded by [tex]y=\frac{4}{\sqrt{1-x^2} }[/tex] , [tex]y=4e^{-x}[/tex] over the interval [0, 1/2]

The region bounded by given curves is as shown below.

The area of this region would be,

[tex]\Rightarrow A=\int\limits^\frac{1}{2} _0 {y-\frac{4}{\sqrt{1-x^{2}}}} \, dx \\\\\Rightarrow A=\int\limits^\frac{1}{2} _0 {4e^{-x}-\frac{4}{\sqrt{1-x^{2}}}} \, dx[/tex]

Now we evaluate above integral.

[tex]\Rightarrow A=4\int\limits^\frac{1}{2} _0 {e^{-x}-\frac{1}{\sqrt{1-x^{2}}}} \, dx\\\\\Rightarrow A=4[\int\limits^\frac{1}{2} _0 {e^{-x}}\,dx -\int\limits^\frac{1}{2} _0{\frac{1}{\sqrt{1-x^{2}}}} \, dx]\\\\\Rightarrow A=4([e^{-x}]_0^{\frac{1}{2} } -[sin^{-1}(x)]_0^{\frac{1}{2} })\\[/tex]

[tex]\Rightarrow A=4([1-\frac{1}{\sqrt{e} } ] -[\frac{\pi}{6} ])\\\\\Rightarrow A=4(1-\frac{1}{\sqrt{e} } -\frac{\pi}{6} )\\\\\Rightarrow A=|4~\times (-0.13013)|\\\\\Rightarrow A=0.521[/tex]

Therefore, the area of  the region bounded by [tex]y=\frac{4}{\sqrt{1-x^2} }[/tex] , [tex]y=4e^{-x}[/tex] over the interval [0, 1/2] is 0.521 square units.

Learn more about the area under the curve here:

https://brainly.com/question/7785373

#SPJ2

View image PratikshaS